Intelligent Systems

1 Introduction 10/03

- Three types of machine learning
 - supervised learning
 - unsupervised learning
 - reinforcement learning

2 Unconstrained optimization problem 10/10

• convex optimization problem

–
$$oldsymbol{x}^* = argmin_{oldsymbol{x} \in \mathcal{X}} f(oldsymbol{x})$$

- $-\nabla f(\boldsymbol{x}^{*}) = \boldsymbol{0}$ is the necessary condition
- Steepest descent method
 - use $\boldsymbol{x}_{k+1} = \boldsymbol{x}_k \varepsilon_k \nabla f(\boldsymbol{x}_k)$ and find the suitable x
 - In order to find the step distance ϵ , two ways are used
 - * exact line search, which is to find $\min_{\varepsilon_k > 0} f\left(\boldsymbol{x}_k \varepsilon_k \nabla f\left(\boldsymbol{x}_k \right) \right)$
 - * backtracking line search, which is to decay ϵ_k until it satisfies almiho rule,

$$f(\boldsymbol{x}_{k} - \varepsilon_{k} \nabla f(\boldsymbol{x}_{k})) - f(\boldsymbol{x}_{k}) \leq -\alpha \varepsilon_{k} \|\nabla f(\boldsymbol{x}_{k})\|^{2}$$

- Newton method
 - use $\boldsymbol{x}_{k+1} = \boldsymbol{x}_k \varepsilon_k \left(\nabla^2 f(\boldsymbol{x}_k) \right)^{-1} \nabla f(\boldsymbol{x}_k)$
 - However, this algorithm takes a lot of time to calculate the invertible matrix.
- Quasi-Newton method
 - It's practical because it does not include the calculation of the invertible matrix.

3 Constrained optimization problems 10/17

3.1 $\min_{\boldsymbol{x} \in \mathcal{X}} f(\boldsymbol{x})$ subject to $\boldsymbol{g}(\boldsymbol{x}) = \boldsymbol{0}$

- penalty method
- method of Lagrange multipliers
 - let L be $L(\boldsymbol{x}, \boldsymbol{\lambda}) = f(\boldsymbol{x}) + \boldsymbol{\lambda}^{\top} \boldsymbol{g}(\boldsymbol{x})$ and solve the equation $\nabla_{\boldsymbol{\lambda}} L(\boldsymbol{x}, \boldsymbol{\lambda}) = 0$ and $\nabla_{\boldsymbol{x}} L(\boldsymbol{x}, \boldsymbol{\lambda}) = 0$

- \bullet dual ascent method
 - method of lagrange multipliers needs complex calculations, so separate it into two steps
 - First, calculate $\boldsymbol{x}_{k+1} = \operatorname{argmin}_{\boldsymbol{x} \in \mathcal{X}} L\left(\boldsymbol{x}, \boldsymbol{\lambda}_{k}\right)$ then do $\boldsymbol{\lambda}_{k+1} = \boldsymbol{\lambda}_{k} + \varepsilon_{k} \boldsymbol{g}\left(\boldsymbol{x}_{k+1}\right)$
- method of multipliers
 - use augmented Lagrangian instead of Lagrangian
 - augmented Lagrangian is defined as $L_c(\boldsymbol{x}, \boldsymbol{\lambda}) = f(\boldsymbol{x}) + \boldsymbol{\lambda}^\top \boldsymbol{g}(\boldsymbol{x}) + \frac{c}{2} \|\boldsymbol{g}(\boldsymbol{x})\|^2$

3.2 $\min_{\boldsymbol{x} \in \mathcal{X}} f(\boldsymbol{x})$ subject to $\boldsymbol{h}(\boldsymbol{x}) \leq \boldsymbol{0}$

- penalty method
- KKT conditions
 - Seeing an active constraint and an inactive constraint, we gain KKT conditions.
- If we take dual problems, which often be called Lagrange dual problems, we could reduce the number of constraints.

4 Searching 10/24

- Translate some conditions into state-space
- Blind search (no cost)
 - DFS and BFS
 - iterative deeping search
- $\bullet \mbox{ cost search}$
 - greedy search
 - $\ast\,$ relation with DFS
 - optimal search (Dijkstra's algorithms)
 - * relation with BFS
 - Two above methods are blind search, but if you know something in the graph, you can use heuristics search like A-star search
- game tree
 - min-max
 - alpha-beta

5 Probability distribution 10/31

- cumulative distribution function
- $\bullet\,$ skewness and kurtosis
- moment generating function
- convolution

6 Various kinds of probability distribution 11/14

6.1 Discrete probability distribution

- discrete uniform distribution
- binomial distribution
 - the number of successes in a sequence of n independent experiments, which says yes with probability p
- hypergeometric distribution
 - the probability of k successes in n draws without replacement
- Poisson distribution
 - the probability of a given number of events occurring in a fixed interval of time or space

6.2 Continuous probability distribution

• gaussian distribution

$$-f(x) = \frac{1}{\sqrt{2\pi}} exp(-\frac{(s-\mu)^2}{2\sigma^2})$$

- gamma distribution
 - The time which happens the first event under the probability of a given number of events occurring in a fixed interval of time or space
- beta distribution

7 Law of large numbers and central limit theorem 11/21

7.1 some inequalities

- Chebyshev's inequality
- Markov's inequality, Jensen's inequality, and Holder's inequality

7.2 law of large numbers

- weak law of large numbers
- strong law of large numbers

7.3 Central limit theorem

• if n is large, $\bar{X_n}$ is followed gaussian distribution

7.4 hypothesis testing

8 supervised learning 11/28

8.1 regression

- least squares $\min_{\boldsymbol{\theta}} \left[\frac{1}{2} \sum_{i=1}^{n} (y_i f_{\boldsymbol{\theta}} (\boldsymbol{x}_i))^2 \right]$
- using kernel matrix, $\frac{1}{2}(K\theta y)^{\top}(K\theta y)$
- To prevent overfitting, normalization are used
- $\frac{1}{2}\sum_{i=1}^{n}\left(y_{i}-f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right)\right)^{2}+\frac{\lambda}{2}\sum_{j=1}^{n}\theta_{j}^{2}$
- \bullet cross-validation

8.2 classification

- margin and svm
- if the data cannot be diveded with the hyperplane, we use $\phi(x)$ to project feature space, which can be diveded with hyperplane.
- kernel trick, which use $\phi(x)^{\top}\phi(x)$ instead of $\phi(x)$
- subgradient method is used to this optimization

9 unsupervised learning 12/05

- principal component analysis
 - $-T_{best} = argmintr(TCT^{\top})$
 - relation with eigen value problems
- kmeans clastering
 - well known algorithms for clastering
 - kernel trick
- some applications of PCA and kmeans

10 sequential data 12/12

- introuction to NLP
 - structured prediction
 - sequence labeling
- Hidden Markov Model
 - Viterbi algorithms and dynamic programming

11 HMM 12/19

• parameter inference

- maximum likelihood analysis
- Baum-Welch algorithm

12 Parsing 12/26

- parse tree
- $\bullet~\mathrm{CFG}$
- CKY method
- PCFG