PRML chapter9

1. K-means clustering
e our purpose is to deivide {z1, z2,...,zn} into K groups

e Objective function is
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e uis a center of the cluster, and r,; is what cluster x,, in
e First we initialize uy, then minimize J with respect to the r,;, keeping the u; fixed. And
then minimize J with respect to the uy, keeping r,j fixed.

e J can be written ad follows
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e minimize J with respect to the ug, keeping 7, fixed.
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e K-medoids algorithm is to make objective function
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2. Mixtures of Gaussians

e the conditional distribution of x given a particular value for z is
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e we are able to work with the joint distribution p(x, z) instead of the marginal distribution

p(x) which is written in chapter 2.9
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e the conditional probability of z given x plays an important role
WkN(X|Nka )
K
Z] 1 (Xll"’]’ )

v (2k) =p (21 = 1]x) =

(a) Maximum likelihood

e the log of the likelihood function is
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e there is a problem that distribution mighht be too shape aroud the mean to cause over-
fitting — Baysean approach prevent it
(b) EM for Gaussian mixtures
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e then we gain
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e deriviate it with respect to 3y
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e maximizw it with respect to the mixing coefficient 7y, using lagrangian function
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e repeat this three steps unitil convergence criterion is satisfied (EM algorithm)
3. An Alternative View of EM
e first, we chose an initial value of parameters 6°'4
e Second, we take, EstepEvaluatep(Z|X, §°4)

e let Q be
Q(0,6°") =" p(Z|X,0°) Inp(X, Z|6)
Z

and take M step,
0" = arg maxQ (9, 9°ld)



e repeat this step until convergence criterion is satisfied
(a) Gaussian mixtures revisited

e the likelihood for the complete data set X, Z
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e posterior distribution of Z is
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(b) Relation to K-means
e EM algorithm makes a soft assignment based on the posterior probabilities (K-means are
hard)
(¢) Mixtures of Bernoulli distributions
e Consider the a finite mixture of Bernoulli distributions. let x be a variable, u be a

parameter, then
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e the log likelihood function is
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e prior distribution for the latent value is
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, we could gain
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e using
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e deriviate it with respect to py and 7y
4. The EM algorithm in general
e Here we give a very general treatment of the EM algorithm and in the process provide a proof
that the EM algorithm derived heuristically in Sections 9.2 and 9.3 for Gaussian mixtures
does indeed maximize the likelihood function

e consider
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e we could decompose log likelihood as
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