
PRML chapter7

1. Maximum Margin classifiers

in chapter 6 we think about the kernel from all of the train data but in this chapter, we consider

the portion of the train data

• consider the classify problem using y(x) = wTϕ(x) + b

• margin is the minimmum distance between the point and the classification boundary (let

margin be y = 1,−1)

• support vector is a near data from the boundary (sometimes nearest)

• solve argmax
{

1
∥w∥ minn

[
tn
(
wTϕ (xn) + b

)]}
in simple shape

• doing scale transformation using tn
(
wTϕ (xn) + b

)
= 1, we can make above formula

argmin
1

2
∥w∥2

• Optimization problem of Lagrangian function

L(w, b,a) =
1

2
∥w∥2 −

N∑
n=1

an
{
tn
(
wTϕ (xn) + b

)
− 1
}

• dedicate it with respect to b and w, we gain maximize problem

L̃(a) =

N∑
n=1

an − 1

2

N∑
n=1

N∑
m=1

anamtntmk (xn,xm)

with respect to a

• The first equation is written as this shape

y(x) =

N∑
n=1

antnk (x,xn) + b

• from KKT,
an0tny (xn)− 10an {tny (xn)− 1} = 0

• when an = 0, since {tny (xn)− 1} ̸= 0, which means it does not affect the prediction

• when a point satisfies an ̸= 0, it is called support vector

• After solving the quadratic programming problem and calculate a, we gain

b =
1

NS

∑
n∈S

(
tn −

∑
m∈S

amtmk (xn,xm)

)
using it
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• The boundary made from SVM is only depend on the support vector

（a）overlapping class distributions

• permit some misclasses (In the bove discussion, we consider only the data that is linearly

separable in the feature space)

• define discrimination function as tny (xn) ≥ 1− ξn

• minimize C
∑N

n=1 ξn + 1
2∥w∥2, under C is a penalty

• the lagrangian function is

L(w, b, ξ,a, µ) =
1

2
∥w∥2 + C

N∑
n=1

ξn −
N∑

n=1

an {tny (xn)− 1 + ξn} −
N∑

n=1

µnξn,

then consider KKT conditions

• same flow as above. first calculate lagrangian function, then using KKT, we gain la-

grangian function under dual representations. Then we solve quadratic programming

problem

• SVM can do stochastic prediction (Platt, 2000)

（b）relation to logistic regression

• define objective function as
N∑

n=1

ESV (yntn) + λ∥w∥2

(ESV (yntn) = [1− yntn]+)

, and compare with logistic regression

（c）Multiclass SVMs

• SVM can append to multiclass classification problem

• In this book some algorithms are introduced qualitatively

（d）SVMs for regression

• in order to get the sparse solution, we replace square error function with ϵ-insensitive error

function, which is expressed as Ee(y(x)− t) =

{
0

|y(x)− t| − ϵ

• As before we re-express the optimization problem by introducing slack variables

• regularizes erroe function is

C

N∑
n=1

Eϵ (y (xn)− tn) +
1

2
∥w∥2

and re-express as

C

N∑
n=1

(
ξn + ξ̂n

)
+

1

2
∥w∥2

• lagrangian function is

L = C

N∑
n=1

(
ξn + ξ̂n

)
+
1

2
∥w∥2−

N∑
n=1

(
µnξn + µ̂nξ̂n

)
−

N∑
n=1

an (ϵ+ ξn + yn − tn)−
N∑

n=1

ân

(
ϵ+ ξ̂n − yn + tn

)
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• from above, we gain

L̃(a, â) = −1

2

N∑
n=1

N∑
m=1

(an − ân) (am − âm) k (xn,xm) − ϵ

N∑
n=1

(an + ân) +

N∑
n=1

(an − ân) tn

and optimize it with respect to an and ân

• y(x) =
∑N

n=1 (an − ân) k (x,xn) + b represents the predicted value

• the points out of the ϵ tube are the support vectors

（e）Computational learning theory

• PAC is a learning framework that tells us how much data we need for learning and calculate

the time for learning

2. Relevance vector machines

• revise SVM using the bayesian technique

（a）RVM for regression

• RVM model is

y(x) =

N∑
n=1

wnk (x,xn) + b

• likelihood function is

p(t|X,w, β) =

N∏
n=1

p (tn|xn,w, β)

• weight prior takes the form of

p(w|α) =

M∏
i=1

N
(
wi|0, α−1

i

)
, which enables most of the weight parameters to be zero. We could gain sparse model

• posterior distribution for the weights

p(w|t,X,α, β) = N (w|m,Σ)

m = βΣΦTt

Σ =
(
A+ βΦTΦ

)−1

• the values of α and β are determined evidence approximation. We maximize with respect

to α and β

p(t|X,α, β) =

∫
p(t|X,w, β)p(w|α)dw

• After we gain hyper parameter a∗, β∗, the predictive distribution is

p(t|x,X, t,a⋆, β⋆) =

∫
p(t|x,w, β⋆)p(w|X, t,α⋆, β⋆)dw = N (t|mTϕ(x), σ2(x))

σ2(x) = (β∗)
−1

+ ϕ(x)TΣϕ(x)

• RVM takes more time to learn than SVM

（b）Analysis of sparsity

• examine the reason why we could gain sparse solution in RVM

（c）RVM for regression
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