PRML chapter7

1. Maximum Margin classifiers

in chapter 6 we think about the kernel from all of the train data but in this chapter, we consider the portion of the train data

- consider the classify problem using $y(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \phi(\mathbf{x}) + b$
- margin is the minimum distance between the point and the classification boundary (let margin be y = 1, -1)
- support vector is a near data from the boundary (sometimes nearest)
- solve $\arg \max \left\{ \frac{1}{\|\mathbf{w}\|} \min_{\mathbf{n}} \left[t_n \left(\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi} \left(\mathbf{x}_n \right) + b \right) \right] \right\}$ in simple shape
- doing scale transformation using $t_n\left(\mathbf{w}^T\phi\left(\mathbf{x}_n\right) + b\right) = 1$, we can make above formula

$$\arg\min\frac{1}{2}\|\mathbf{w}\|^2$$

• Optimization problem of Lagrangian function

$$L(\mathbf{w}, b, \mathbf{a}) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{n=1}^{N} a_n \left\{ t_n \left(\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi} \left(\mathbf{x}_n \right) + b \right) - 1 \right\}$$

 \bullet dedicate it with respect to b and w, we gain maximize problem

$$\tilde{L}(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m k\left(\mathbf{x}_n, \mathbf{x}_m\right)$$

with respect to a

• The first equation is written as this shape

$$y(\mathbf{x}) = \sum_{n=1}^{N} a_n t_n k(\mathbf{x}, \mathbf{x}_n) + b$$

• from KKT,

$$a_n 0t_n y\left(\mathbf{x}_n\right) - 10a_n \left\{t_n y\left(\mathbf{x}_n\right) - 1\right\} = 0$$

- when $a_n = 0$, since $\{t_n y(\mathbf{x}_n) 1\} \neq 0$, which means it does not affect the prediction
- when a point satisfies $a_n \neq 0$, it is called support vector
- After solving the quadratic programming problem and calculate a, we gain

$$b = \frac{1}{N_S} \sum_{n \in S} \left(t_n - \sum_{m \in S} a_m t_m k\left(\mathbf{x}_n, \mathbf{x}_m\right) \right)$$

using it

- The boundary made from SVM is only depend on the support vector
- (a) overlapping class distributions
 - permit some misclasses (In the bove discussion, we consider only the data that is linearly separable in the feature space)
 - define discrimination function as $t_n y(\mathbf{x}_n) \ge 1 \xi_n$
 - minimize $C \sum_{n=1}^{N} \xi_n + \frac{1}{2} ||\mathbf{w}||^2$, under C is a penalty
 - the lagrangian function is

$$L(\mathbf{w}, b, \xi, \mathbf{a}, \mu) = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{n=1}^{N} \xi_n - \sum_{n=1}^{N} a_n \{t_n y(\mathbf{x}_n) - 1 + \xi_n\} - \sum_{n=1}^{N} \mu_n \xi_n,$$

then consider KKT conditions

- same flow as above. first calculate lagrangian function, then using KKT, we gain lagrangian function under dual representations. Then we solve quadratic programming problem
- SVM can do stochastic prediction (Platt, 2000)
- (b) relation to logistic regression
 - define objective function as

$$\sum_{n=1}^{N} E_{SV}(y_n t_n) + \lambda \|\mathbf{w}\|^2$$

$$(E_{SV}(y_n t_n) = [1 - y_n t_n]_+)$$

, and compare with logistic regression

- (c) Multiclass SVMs
 - SVM can append to multiclass classification problem
 - In this book some algorithms are introduced qualitatively
- (d) SVMs for regression
 - in order to get the sparse solution, we replace square error function with ϵ -insensitive error function, which is expressed as $E_e(y(\mathbf{x}) t) = \begin{cases} 0 \\ |y(\mathbf{x}) t| \epsilon \end{cases}$
 - \bullet As before we re-express the optimization problem by introducing slack variables
 - regularizes erroe function is

$$C\sum_{n=1}^{N} E_{\epsilon} \left(y\left(\mathbf{x}_{n}\right) - t_{n} \right) + \frac{1}{2} \|\mathbf{w}\|^{2}$$

and re-express as

$$C\sum_{n=1}^{N} \left(\xi_n + \widehat{\xi}_n\right) + \frac{1}{2} \|\mathbf{w}\|^2$$

• lagrangian function is

$$L = C \sum_{n=1}^{N} \left(\xi_n + \widehat{\xi}_n \right) + \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{n=1}^{N} \left(\mu_n \xi_n + \widehat{\mu}_n \widehat{\xi}_n \right) - \sum_{n=1}^{N} a_n \left(\epsilon + \xi_n + y_n - t_n \right) - \sum_{n=1}^{N} \widehat{a}_n \left(\epsilon + \widehat{\xi}_n - y_n + t_n \right)$$

• from above, we gain

$$\widetilde{L}(\mathbf{a},\widehat{\mathbf{a}}) = -\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \left(a_n - \widehat{a}_n \right) \left(a_m - \widehat{a}_m \right) k\left(\mathbf{x}_n, \mathbf{x}_m \right) - \epsilon \sum_{n=1}^{N} \left(a_n + \widehat{a}_n \right) + \sum_{n=1}^{N} \left(a_n - \widehat{a}_n \right) t_n$$

and optimize it with respect to a_n and \widehat{a}_n

- $y(\mathbf{x}) = \sum_{n=1}^{N} (a_n \hat{a}_n) k(\mathbf{x}, \mathbf{x}_n) + b$ represents the predicted value
- \bullet the points out of the ϵ tube are the support vectors
- (e) Computational learning theory
 - PAC is a learning framework that tells us how much data we need for learning and calculate the time for learning
- 2. Relevance vector machines
 - revise SVM using the bayesian technique
 - (a) RVM for regression
 - RVM model is

$$y(\mathbf{x}) = \sum_{n=1}^{N} w_n k(\mathbf{x}, \mathbf{x}_n) + b$$

• likelihood function is

$$p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) = \prod_{n=1}^{N} p(t_n|\mathbf{x}_n, \mathbf{w}, \beta)$$

• weight prior takes the form of

$$p(\mathbf{w}|\boldsymbol{\alpha}) = \prod_{i=1}^{M} \mathcal{N}\left(w_i|0, \alpha_i^{-1}\right)$$

, which enables most of the weight parameters to be zero. We could gain sparse model

• posterior distribution for the weights

$$p(\mathbf{w}|\mathbf{t}, \mathbf{X}, \boldsymbol{\alpha}, \beta) = \mathcal{N}(\mathbf{w}|\mathbf{m}, \boldsymbol{\Sigma})$$
$$\mathbf{m} = \beta \boldsymbol{\Sigma} \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{t}$$
$$\boldsymbol{\Sigma} = (\mathbf{A} + \beta \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi})^{-1}$$

• the values of α and β are determined evidence approximation. We maximize with respect to α and β

$$p(\mathbf{t}|\mathbf{X}, \boldsymbol{\alpha}, \beta) = \int p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) p(\mathbf{w}|\boldsymbol{\alpha}) d\mathbf{w}$$

• After we gain hyper parameter a^*, β^* , the predictive distribution is

$$p(t|\mathbf{x}, \mathbf{X}, \mathbf{t}, \mathbf{a}^*, \beta^*) = \int p(t|\mathbf{x}, \mathbf{w}, \beta^*) p(\mathbf{w}|\mathbf{X}, \mathbf{t}, \alpha^*, \beta^*) d\mathbf{w} = \mathcal{N}(t|\mathbf{m}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}), \sigma^2(\mathbf{x}))$$
$$\sigma^2(\mathbf{x}) = (\beta^*)^{-1} + \phi(\mathbf{x})^{\mathrm{T}} \boldsymbol{\Sigma} \phi(\mathbf{x})$$

- RVM takes more time to learn than SVM
- (b) Analysis of sparsity
 - examine the reason why we could gain sparse solution in RVM
- (c) RVM for regression