PRML chapter7

1. Maximum Margin classifiers

in chapter 6 we think about the kernel from all of the train data but in this chapter, we consider

the portion of the train data

consider the classify problem using y(x) = w'¢(x) + b
margin is the minimmum distance between the point and the classification boundary (let
margin be y =1, —1)
support vector is a near data from the boundary (sometimes nearest)
1

solve arg max {m miny, [tn (WT¢ (xn) + b)] } in simple shape

doing scale transformation using ¢, (W’ ¢ (x,,) + b) = 1, we can make above formula
1
arg min—||w]|?
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Optimization problem of Lagrangian function
1 2 S T
L(w,b,a) = 5HWH — Zan {t, (W' (xn) +b) — 1}
n=1

dedicate it with respect to b and w, we gain maximize problem
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Z(a) = Z an = 5 Z Z n btk (Xn, Xm)
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with respect to a

The first equation is written as this shape

N
y¥) = 3 antak (x,%,) + b
n=1

from KKT,
an 0ty (Xn) — 10a, {tny (Xn) - 1} =0

when a,, = 0, since {¢,y (x,) — 1} # 0, which means it does not affect the prediction
when a point satisfies a,, # 0, it is called support vector

After solving the quadratic programming problem and calculate a, we gain
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b= Ni Z (tn - Z amtmk (Xnaxm)>
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e The boundary made from SVM is only depend on the support vector
(a) overlapping class distributions
e permit some misclasses (In the bove discussion, we consider only the data that is linearly
separable in the feature space)
e define discrimination function as t,y (x,) > 1—&,
e minimize C Y0, &, + 1||w||?, under C is a penalty

e the lagrangian function is
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1
L(w,b,&,a, 1) = §HW||2+C E &n — E an {tny (Xn)_1+§7z}_ E Pnéns
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then consider KKT conditions
e same flow as above. first calculate lagrangian function, then using KKT, we gain la-
grangian function under dual representations. Then we solve quadratic programming
problem
e SVM can do stochastic prediction (Platt, 2000)
(b) relation to logistic regression

e define objective function as

N
> Bsv (yatn) + A wl
n=1

(Esv (Yntn) = [1 — yntn]+)

, and compare with logistic regression
(¢) Multiclass SVMs
e SVM can append to multiclass classification problem
e In this book some algorithms are introduced qualitatively
(d) SVMs for regression

e in order to get the sparse solution, we replace square error function with e-insensitive error

0
function, which is expressed as E,(y(x) —t) =
ly(x) —t] —e
e As before we re-express the optimization problem by introducing slack variables

e regularizes erroe function is

N

1
C; B (y (xn) —tn) + 5”“’”2
and re-express as
Ci (n+8) + 5wl
n=1 2
e lagrangian function is
N ~ 1 N N N R
n=1 n=1 n=1 n=1



e from above, we gain
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and optimize it with respect to a, and @,
o y(x)= 25:1 (an, —an) k (x,%y) + b represents the predicted value

e the points out of the € tube are the support vectors

(e) Computational learning theory
e PAC is a learning framework that tells us how much data we need for learning and calculate

the time for learning

2. Relevance vector machines
e revise SVM using the bayesian technique

(a) RVM for regression
e RVM model is

N
X) = ank(x,xn) +5b
n=1

likelihood function is

°
2

t‘X’ W’/B = H t |Xn’ 7 )

n=1

weight prior takes the form of

p(wla) = H/\f w;|0, ;")

=1

which enables most of the weight parameters to be zero. We could gain sparse model

posterior distribution for the weights
p(wlt, X, o, ) = N(w|m, X)
m = X0t

Y= (A+52"®)

-1

the values of a and 8 are determined evidence approximation. We maximize with respect

to o and (8
p(6]X, o, B) = / p(t]X, w, B)p(wla)dw

After we gain hyper parameter a*, 5*, the predictive distribution is

p(tlx, X, t,a", %) = /p(t\xw,B*)p(WIX,t,a*,ﬁ*)dW = N (tm"¢(x), 0*(x))

o (x) = (8") " + ¢(x) " S (x)

e RVM takes more time to learn than SVM

(b) Analysis of sparsity
e examine the reason why we could gain sparse solution in RVM

(¢) RVM for regression



