
PRML chapter14

1. Bayesian Model Averaging

• The marginal distribution of the data is

p(X) =

H∑
h=1

p(X|h)p(h)

– p(h) is a probability of the model is chosen

– p(X|h) is a probability X is generated given h

– In contrast, in joint models, z means which model causes the data.

2. Committees

• average the approximation from the each models

• Though the data set is unique, we use bootstrap and obtain some data sets.

• yCOM(x) = 1
M

∑M
m=1 ym(x)

3. Boosting

• AdaBoost

– initialize data coefficient w by uniformaly

– loop the following calculation, minimizing the weighted error function

Jm =

N∑
n=1

w(m)
n I (ym (xn) ̸= tn)

and evaluate the quantity

ϵm =

∑N
n=1 w

(m)
n I (ym (xn) ̸= tn)∑N

n=1 w
(m)
n

αm = ln

{
1− ϵm
ϵm

}
then, update the weighted coefficient

w(m+1)
n = w(m)

n exp {αmI (ym (xn) ̸= tn)}

– make predictions

YM (x) = sign

(
M∑

m=1

αmym(x)

)

（a）Minimizing exponential error
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• exponential error is defined as

E =

N∑
n=1

exp {−tnfm (xn)}

under

fm(x) =
1

2

m∑
l=1

αlyl(x)

• we want to minimize the exponential error. First minimize with respect to αm and ym

under α1...αm−1 and y1...ym−1 are fixed

• we obtain the above formulation in AdaBoost

（b）Error functions for boosting

• define error function as

Ex,t[exp{−ty(x)}] =
∑
t

∫
exp{−ty(x)}p(t|x)p(x)dx

• The difference between cross-entropy error and exponential error

4. Tree-based Models

• partition the input space into cuboid region

5. Conditional Mixture Models

（a）Mixtures of linear regression models

• log loglikelihood function is written as

p(t|θ) =
K∑

k=1

πkN (t|wT
kϕ, β

−1)

and we could appy EM algorithms

（b）Mixtures of logistic models

（c）likelihood function is defined as

p(t|θ) =
N∏

n=1

(
K∑

k=1

πky
tn
nk [1− ynk]

1−tn

)

and we could apply EM algorithms

（d）Mixtures of experts

• We can further increase the capability of such models by allowing the mixing coefficients

themselves to be functions of the input variable
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