PRML chapter12

1. Principal Component Analysis
(a) Maximum variance formulation
e Our goal is to project data D onto a space having a dimentionality M
e cach data point x,, is projected onto ujx,
e mean of the projected data is uj x
e the variance of the projected data is % ZnN:1 {urlrxn — urlri} =ulSu

e maximize uj Su;with respect to u
ulTSul + M (1 — u?ul)

e the variance will be a maximum when we set u equal to the maximum eigen vector
e principal component analysis requires the mean and variance, also needs largest M eigen-
vectors
(b) Minimum-error formulation

e Introduce a complete orthonormal set of D-dimensional vectors u

D

X, = Z (xZul) u;

i=1
e we approximate the data
S IR S
=M1

e our goal is to minimize
1
J= > llxn — %[
n=1

e first, minimize it with respect to z, then minimize it with respect to u
(c) Applications of PCA

e comprehension of the data

M D M
%= 3w w3 (Ku) - x+ 3 (- X u) u
i=1 i=M+1 i—1

e data pre-processing
(d) PCA for high-dimensional data
e if the number of data points is smaller than the dimentionality of the data space, we have

to take different approach because the computational cost O(D?)



e take the following algorithms and solve it with O(N3)
e let X be a matrix whose nth row is (x, — X)"
e under v; = Xu,,

1

NXXTVZ' = )\ivi

2. Probabilistic PCA
e PCA can also be expressed as the maximum likelihood solution of a probabilistic latent variable
model
e First we gave the prior distribution over z as p(z) = N (2|0, 1)
e the conditional distribution of observed value x, p(x|z) = N (x|Wz + p, 0*I)
e P(z) = [ P(z|z)p(z)dz provide us the parameters
(a) Maxunum likelihood PCA

e we want to maximize log likelihood function

N
Inp(X|p, W,0%) =Y " Inp (x,|W, u,07)

n=1

ND 1Y

=——"In(271) - = ln IC| — = Z (xn —p) " C71 (% — )

n—1

e the calculation is very complex, Tipping and Bishop(1999)
W, = Uy (L — 021)1/2 R

e the number of independant parameters are controlled automatically
(b) EM algorithm for PCA
e it has an advantage when we treat high-dimentinoal data

e complete log-likelihood function takes the form

N
Inp(X,Z|p, W, 0?) = Z {Inp (x|2n) + Inp (2,)}
n=1
e E Step
Elz,) =M 'WT (x, - %)
E [znzT] =0’M ' + E[z,)E [zn]T
e M Step

N
Onew = J\[i Z {”Xn _iH2 - 2K [Z ] WECW ( Xn i) +Tr (E [ ] WECWWHGW)}

n=1
(¢) Bayesian PCA

e we want to decide M with Bayesian approach



choose model with Bayesian approach

(d) Factor analysis

factor analysis has
p(x[z) = N(x|Wz + p, ¥)

We can determine p, W, ¥ in the factor analysis model by maximum likelihood

use EM algorithm

3. Kernel PCA

we want to obtain non-linear gerenalization

the principal vector is defined as

Slll' = )\2 u;

where

n=1
sample covariance matrix is
N
1 T
C= > ¢ xa) b (x0)
n=1
eigen vector of matrix C is
N
Vi = Z ain® (Xn)
n=1

Kernel function gives us a solution for a by solving the following eigenvalue problem

Kai = /\iNai

the projection of x onto eigenvector i is written as

N N
yl(x) = ¢(X)Tvi = Z ain¢<X)T¢ (Xn> = Z aink (Xv Xn)

4. Nonlinear latent value model

e consider the models based on non-linear and non-Gaussian distributions

(a) Independent component analysis

the example of non-linear latent variables model
In this models, observed variables are related linearly to the latent variables but the latent
distribution is non-Gaussian.

latent variables are independent so

M

p(z) =[] r(z)

j=1
no need to consider the noise, because the number of observed variables and latent vari-
ables are same

The success of this approach requires that the latent variables have non-Gaussian distri-

butions.



(b) Auto associative neural networks
e Create the newral network model whose input and output are D dimention
e The model tells us the features of the dataset.

e tells us more information than PCA but calculation amount is large



