
PRML chapter11

1. Markov Chain Monte Carlo

• allows sampling from a large class of distributions, and which scales well with the dimension-

ality of the sample space

• Metropolis algorithm

– sample is accepted with probability

A
(
z⋆, z(τ)

)
= min

(
1,

p̃ (z⋆)

p̃
(
z(τ)

))

– choose a random number u with uniform distribution over the unit interval (0,1)

– accepting the sample if A
(
z⋆, z(τ)

)
> u

– a central goal in designing Markov chain Monte Carlo methods is to avoid random walk

behaviour

（a）Markov chains

• Markov chain is the situation that we can approximate future from the given states

• A first-order Markov chain is defined as

p
(
z(m+1)|z(1), . . . , z(m)

)
= p

(
z(m+1)|z(m)

)
• marginal probability is written as

p
(
z(m+1)

)
=
∑
z(m)

p
(
z(m+1)|z(m)

)
p
(
z(m)

)
• A distribution is invariant when it satisfies

p⋆(z) =
∑
z′

T (z′, z) p⋆ (z′)

（b）The Metropolis-Hastings algorithm

• We first propose q(Z), then samples from it. We accept the sample when it sattisfies

detailed balance

• generalize metropolis algorithm by making

Ak

(
z⋆, z(τ)

)
= min

(
1,

p̃ (z⋆) qk
(
z(τ)|z⋆

)
p̃
(
z(τ)

)
qk
(
z⋆|z(τ)

))
• By using this we could proof the Metropolis algorithm samples from the required distri-

bution

1



2. Gibbs Sampling

• a special case of the Metropolis- Hastings algorithm.

• First we initialize {zi : i = 1, . . . ,M}
• for each τ :and for each j: sample

z
(τ+1)
j ∼ p

(
zj |z(τ+1)

1 , . . . , z
(τ+1)
j−1 , z

(τ)
j+1, . . . , z

(τ)
M

)
• In order to gain the proper sampling, we need p(z) is invariant and Ergodicity

• we use ”over-relaxation” to prevent it behaving like random walk.

3. Slice Sampling

• Metropolis algorithm is sensitive to step size

• The technique of slice sampling provides an adaptive step size that is automatically adjusted

to match the characteristics of the distribution

4. The Hybrid Monte Carlo Algorithm

（a）Dynamical systems

• momentum variable

ri =
dzi
dτ

• under E(z) is potential energy

p(z) =
1

Zp
exp(−E(z))

• Physical energy is

K(r) =
1

2
∥r∥2 =

1

2

∑
i

r2i

• The total enegy of the system is

H(z, r) = E(z) +K(r)

• During the evolution of this dynamical system, Hamilton function is constant

• Consider the joint distribution over phase space whose total energy is the Hamiltonian

p(z, r) =
1

ZH
exp(−H(z, r))

• leapfrog discretization

– repeat following loop

r̂i(τ + ϵ/2) = r̂i(τ)−
ϵ

2

∂E

∂zi
(ẑ(τ))

ẑi(τ + ϵ) = ẑi(τ) + ϵr̂i(τ + ϵ/2)

r̂i(τ + ϵ) = r̂i(τ + ϵ/2)− ϵ

2

∂E

∂zi
(ẑ(τ + ϵ))

（b）Hybrid Monte Carlo

• combine Hamilton dynamics and Metropolis algorithm

（c）Estimating the Partition Function

2



• in order to compare Bayes models, need to know the odds of ZE

•

ZE

ZG
=

∑
z exp(−E(z))∑
z exp(−G(z))

=

∑
x exp(−E(z) +G(z)) exp(−G(z))∑

z exp(−G(z))
= EG(z)[exp(−E +G)]

≃ 1

L

∑
l

exp
(
−E

(
z(l)
)
+G

(
z(l)
))
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