PRML chapterll

1. Markov Chain Monte Carlo
e allows sampling from a large class of distributions, and which scales well with the dimension-
ality of the sample space
e Metropolis algorithm
— sample is accepted with probability

A (z*’zm) — min (1, ;((;(;)))

— choose a random number u with uniform distribution over the unit interval (0,1)

— accepting the sample if A (z*, z(T)) >
— a central goal in designing Markov chain Monte Carlo methods is to avoid random walk
behaviour
(a) Markov chains
e Markov chain is the situation that we can approximate future from the given states

e A first-order Markov chain is defined as
P (Z(m+1) ‘2(1)7 o z(m)) —p (Z(m+1)|z(m))

e marginal probability is written as
P (z<m+1>) =3 (Z<m+1>|z<m>> P (z<m>)
z(m)

e A distribution is invariant when it satisfies
pi(z) =Y T(Z,2)p" ()
z/

(b) The Metropolis-Hastings algorithm
e We first propose q(Z), then samples from it. We accept the sample when it sattisfies
detailed balance

e generalize metropolis algorithm by making

S (x () |
A (z*7z(T)) = min (1, p() ai (27)]2") >

ﬁ(z(T)) qk (z*lz(T))

e By using this we could proof the Metropolis algorithm samples from the required distri-

bution



2. Gibbs Sampling
e a special case of the Metropolis- Hastings algorithm.
e First we initialize {z; : i =1,..., M}

e for each 7 :and for each j: sample

z](-TH) ~p (zj|z57+1), e zj(-f{l), z](.fr)l, ey zJ(VTI))

e In order to gain the proper sampling, we need p(z) is invariant and Ergodicity

e we use "over-relaxation” to prevent it behaving like random walk.
3. Slice Sampling

e Metropolis algorithm is sensitive to step size

e The technique of slice sampling provides an adaptive step size that is automatically adjusted

to match the characteristics of the distribution
4. The Hybrid Monte Carlo Algorithm
(a) Dynamical systems
e momentum variable
dz;

T, = —

dr

under E(z) is potential energy

p(z) = Zl exp(~E(2))

Physical energy is
1 1
K@) = Sl = 5 300
i

e The total enegy of the system is

H(z,r) = E(z) + K(r)

During the evolution of this dynamical system, Hamilton function is constant

e Consider the joint distribution over phase space whose total energy is the Hamiltonian

leapfrog discretization

— repeat following loop
(T +¢/2) = 7i(r) - 55 3(7)

Zi(t+e)=Zi(r) + eri(t+€/2)

Fi(r+e) =it +e/2) — <

(b) Hybrid Monte Carlo
e combine Hamilton dynamics and Metropolis algorithm

(¢) Estimating the Partition Function



e in order to compare Bayes models, need to know the odds of Zg

Zp Y ,exp(—E(z)) > exp(—E(z) + G(z))exp(—G(z))
Ze " Sroal Ow) >, exp(~G(2)) = Bemlow(=E+G))

~ % zl: exp (—E (z(l)> +G (z(l)))




