PRML chapter10

1. Variational Inference
e aim : evaluate p(Z|X)
e optimize q(Z), means maximize L(q) or minimize KL(q/||p)

e decompose the log marginal probability using

Inp(X) = L(q) + KL(q|lp),

under o) /q(z)ln {p(q)((i)Z) } iz
KL(qlp) =~ [ a(2)n {pff'z’)@ } 1z

e the parameters are now stochastic variables
e consider a restricted family of distributions q(Z) and then seek the member of this family for
which the KL divergence is minimized
(a) Factorized distributions

e Suppose that q(Z) can be decomposed as below

M
q9(2) = qu' (Zs)

e maximize L(q)

L(q) = /qu {lnp(X7 Z)— Zlnql}dz = /qj /lnp(X, Z)HqidZi de—/qj In g;dZ ;+4-const

i)
= /qj Inp(X,Z;)dZ; —/qj In g;dZ; + const

e it is Kullback-Leibler divergence so we could gain a general expression for the optimal

solution
Ingj (Z;) = Eizj[Inp(X, Z)] + const.

(b) Properties of factorized approximations
e consider the problem of approx- imating a general distribution by a factorized distribution.
e show the difference between KL(p||q) and KL(q||p)
e The former avoids the region that p(Z) is low, otherwise the latter tries to cover the region

that p(Z) is not zero.



(¢) Example: The univariate Gaussian
o illustrate the factorized variational approximation using a Gaussian distribution over a
single variable x
e likelihood is

T % T N 2
p(Dlp, ) = (g) exp {—2 > (wn—p)
e prior distribution is
p(ul7) = N(pluo, (o) ")p(7) = Gam(r|ag, bo)

e we gain

N
In q;(u) = E.[lnp(D|u, 7)+In p(p|7)]+const = —@ {/\0 (= ,UO)2 + Z (xn — ,u)Q}—l—const.

n=1

Ing7(7) = Eu[np(Dp, 7) + Inp(u|7)] + Inp(7) + const

N
:(ao—l)lnT—boT—b-ElnT—gEH + const

N
Z (xn - M)Q =+ >‘0 (,u - NO)Q
n=1

2. Illustration: Variational Mixture of Gaussians
e later come back this session
3. Variational Linear Regression

e /s prior distribution is gamma dustribution and

N
ptIw) = [T N (talw" b0, 871) . p(Wla) = N(w|0,a7'T)
n=1
(a) Variational distribution
e posterior distribution is expressed by the factorized epression
q(w,a) = q(w)q()

e of course we soon gain

Ing*(a) = lnp(a) + Ew[lnp(w|a)] + const
=(ap — 1) Ina — boa + % Ina—-GFE [WTW] + const.

e and
Ing*(w) = lnp(t|w) + E,[In p(w|a)] + const

N

N
Z {whe, — tn}2 - %E[Q]WTW + const
n=1

1
- —éwT (El)I+ B2 ®) w + fw' @Tt + const.
e The evaluation of the variational posterior distribution begins by initializing the pa- ram-
eters of one of the distributions q(w) or q(a), and then alternately re-estimates these

factors in turn until a suitable convergence criterion is satisfied



(b) Predictive distribution

e predictive distribution is calculated easily by

p(t]x, t) = / p(t]x, w)p(wlt)dw = / p(t]x, w)g(w)dw

(¢) lower bound

e another important quantity

L(q) = E[lnp(w, a, t)] — E[lng(w, a)]
= Ew[lnp(t|w)] + Ew o[In p(w|a)] + Eq[lnp(a)] — Eqlng(w)]w — E[lng(a)]
4. Exponential Family Distributions

e make a further distinction between latent variables and parameters

e let joint distribution be

::]2

p(X,Z|n) = h (Xn,2n) g(n) exp {nTu (xn,zn)}

n=1

e prior distribution of 7 is
p(nlvo, vo) = f (v0,x0) 9(m)" exp {von" xo}
e we gain solution as
Ing* (1) = In p(nlvo, x0) + Fzlln p(X, Zim)] + const
Ing*(Z) = E,[lnp(X, Z|n)] + const

e they are dependent on each other so use EM algorithms
5. Local Variational Methods

e approximate the convex function f (x) by a linear function y(x, 1)
flz) = mkax{)\x — A+ An(=A\)}

e more gerenaly

f(w) = max{Az — g(\)}
9(\) = max{Az — f(2)}

6. Variational Logistic Regression
(a) Variational posterior distribution

e In Baysian logistic regression model,

p(t) =/p(t\W)p(W)dW=/ al(tnIW)] p(w)dw

e in last session, we talked about the variational lower bound on the logistic sigmoid func-

tion.



e use it for p(t{w), then
p(tlw) = e®a(—a) > e®o(§) exp {—(a+€)/2 = A(€) (a® - €?) }
e let & be a variational parameter,
p(t, w) = p(t|w)p(w)h(w,&)p(w)

where

N
h(W,f) = H g (gn) eXp {WT¢)ntn - (WT¢n + gn) /2 —A (fn) ([WT¢n]2 - gi)}

e Since log function is monotonically increasing

In{p(6[w)p(w)} = Inp(w) + 0, {In0 (§0) + WPt — (WEn + ) /2= A (&) ([WTea]” — €2)
e substitute p(w), right side of the inequality becomes
3 (w —mg)" 851 (w = o)+ S0y {W b (1 — 1/2) = A (€)W (66T w} + const.
e this is quadratic function of w,
q(w) = N(w|my,Sy)

e we shall use it shortly to evaluate the predictive distribution for new data points
(b) Optimizing the variational parameters
e how to estimate the variational parameter £
e Two ways to achieve this goal, one is to use EM algorithm the other is to integrate
analytically and perform a direct maximization
7. Expectation Propagation

e we have a joint distribution

p(D.6) =[] f:(6)
, and want to approximate the posterior distribution p(6|D) by
1 -
q(0) = [[ fi(®)

e we also want to approximate the model evidence p(D)
e First, we initialixe the approximating factor ﬁ(&)

e and initialize posterior approximation ¢(0) o< [, £:(6)
e Then, choose a factor };(0) that we want to refine

e remove it from the posterior distribution

e calculate ¢"** (@) by equaling to ¢\(0)f;(6)



e normalization constant is

2= [avi0)5,008

e evaluate the new factor )
. qnew
fj ( ) J C]“ (0)

»(0)= [ [ F6)a0

e evaluate the model evidence



