Bio inforamtics

Memo

- 1. Dynamic Programming
 - PairwiseAlignment
 - Needleman-Wunsch algorithms
 - Smith-Waterman algorithms
 - Affin gap score
- 2. Hash
 - hash function
 - open addressing
 - Bloom filter
 - Distribution counting sort
 - Radix sort
- 3. Super Computer
 - scale-up and scale-out
- 4. Graph Algorithm
 - Undirected graph
 - chess's knight
 - Path
 - Directed graph
 - Benzer and interval graph
 - It has one vertex for each interval in the family, and an edge between vertices whose intervals intersect.
 - Shortest superstring problem
 - not useful because it must has sequence errors
 - Traveling salesman problem

- 5. ZDD
 - intruduction
 - ZDD's structure
 - ZDD's advantages
 - How to make ZDD tree
 - Spanning Tree
- 6. How to manage big biological data
 - succint data structure
 - insert + delete + search + rank + select
 - "rank" is a number of 'x's in a given string
 - "select" is a position of 'i'th 'x'
 - AND query
 - alternation α
 - range intersection by using Wavelet tree $\rightarrow O(\alpha logm)$
- 7. Probability models
 - Basic knowledge of DNA
 - Find transferred DNA segments by adhoc methods
 - A probability model with states and transitions
 - hidden markov model
 - how to calculate the probability
 - Finding the most likely path (using dynamic programming)
 - * the most likelu path from the 1st letter to the ith letter, ending in state X
 - * store the X_i , to find the path
 - * maximize the probability
 - * Viterbi Algorithm
 - Score-based sequence analysis
- 8. Evolution
 - four ways to determine the family tree
 - Bayes
 - Maximum likelihood
 - Maximum parsimony
 - Distance method